
Agilent ESG-A/AP and ESG-D/DP RF Signal Generators

Discontinuance Notice

On 1 November 2005, the ESG-AP/DP Series was discontinued. Agilent will continue to support these products until 1 November 2010. The recommended replacement is the Agilent E4428C or E4438C ESG signal generator. For more information visit www.agilent.com/find/esg.

For the ESG-A/D Series, the information contained herein is invalid. Please refer to data sheet 5989-4074EN.

	Analog only		Digital and analog		
	ESG-A series	ESG-AP series (high spectral purity)	ESG-D series	ESG-DP series (high spectral purity)	
250 kHz – 1 GHz	E4400B	E4423B	E4430B	E4434B	
250 kHz – 2 GHz	E4420B	E4424B	E4431B	E4435B	
250 kHz – 3 GHz	E4421B	E4425B	E4432B	E4436B	
250 kHz – 4 GHz	E4422B	E4426B	E4433B	E4437B	

Table of contents

Introduction	j
Specifications for analog and digital models	ł
Characteristic SSB phase noise for ESG-AP and ESG-DP series	j
Specifications for digital models only	j
I/Q baseband generator	
Dual arbitrary waveform generator	
Multichannel, multicarrier CDMA personality	1
Bit Error Rate (BER) analyzer	1
GSM/EDGE base station Bit Error Rate Test (BERT)18	
Baseband BER (Bit Error Rate) tester	I
Multichannel 3GPP W-CDMA personality	J
Multichannel cdma2000 personality	
Multichannel cdma2000 spurious emissions	
Real-time 3GPP W-CDMA personality	;
Real-time cdma2000 personality	j
Real-time EDGE personality	!
Alternate time slot power level control	!
Improved ACP performance for TETRA, CDMA and W-CDMA	
General characteristics	;
Ordering information	I
ESG family application and product information	

Introduction

Standard Agilent Technologies ESG family RF signal generators incorporate a broad array of capabilities for testing both analog and digital communications systems. Adding flexible options provides a test solution that will evaluate the performance of a communication system to the requirements of nearly all current and proposed air interface standards. Many test functions can be customized to meet the needs of proprietary and other nonstandard wireless protocols as well. You can configure your instrument to address a wide variety of tests—from altering nearly every aspect of a digital signal or signal operating environment, to creating experimental signals. This flexibility, along with an architecture that accepts future enhancements makes the ESG family an excellent choice for wireless communications system testing now and in the future.

ESG family of RF signal generators

The family consists of four series:

- ESG-A series: analog instruments E4400B, E4420B, E4421B, E4422B
- ESG-AP series: analog instruments with high spectral purity E4423B, E4424B, E4425B, E4426B
- *ESG-D series:* digital and analog instruments E4430B, E4431B, E4432B, E4433B
- *ESG-DP series:* digital and analog instruments with high spectral purity E4434B, E4435B, E4436B, E4437B

Please refer to the related literature in the section ESG family application and product information for additional information.

Key standard features for entire family

- Expandable architecture
- Broad frequency coverage
- Choice of electronic or mechanical attenuator
- Superior level accuracy
- Wideband FM and ΦM
- · Step sweep (frequency, power and list)
- Built-in function generator
- · Lightweight, rack-mountable
- 1-year warranty
- 2-year calibration cycle

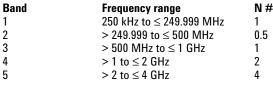
Standard features only in the digital series

- Broadband analog I/Q inputs
- I/Q adjustment capabilities and internal calibration
- · Excellent modulation accuracy and stability
- Coherent carrier output

Options available only with the digital series

- · Built-in dual arbitrary waveform generator
- Multichannel, multicarrier CDMA personality
- Multichannel, multicarrier W-CDMA 1.0 personality
- Multichannel cdma2000 personality
- Real-time 3GPP W-CDMA personality
- Real-time cdma2000 personality
- Real-time EDGE personality
- Internal bit-error-rate analyzer
- · Versatile timeslot, data and burst generation
- Adjustable symbol rates, filter factors and burst shape
- Digital modulation formats for DECT, GSM, NADC, PDC, PHS, and TETRA

Options available only with the analog series


High-performance pulse modulation

Specifications for analog and digital models

Frequency

Sweep modes

Range			Operating modes	•	cy step, amplitude step trary list
ESG-A series					
E4400B	250 kHz to 1 GI	Ηz	Dwell time	1 ms to	60 s
E4420B	250 kHz to 2 GI	Ηz			
E4421B	250 kHz to 3 GI	Ηz	Number of points	2 to 401	
E4422B	250 kHz to 4 GI	Ηz	•		
ESG-AP series			Internal refere	nce oscillator	
E4423B	250 kHz to 1 GI	47			
E4424B	250 kHz to 2 G		Stability	ESG-A and ESG-D	ESG-AP and ESG-DP
E4425B	250 kHz to 3 G		· · · · · ·	series standard	series standard
E4426B	250 kHz to 3 G				ESG-A and ESG-D
L4420D	230 KHZ 10 4 UI	12			series Option 1E5
ESG-D series					
E4430B	250 kHz to 1 GI	Ηz	Aging rate	< ±1 ppm/yr	< ±0.1 ppm/yr or
E4431B	250 kHz to 2 GI	Ηz			< ±0.0005 ppm/day after
E4432B	250 kHz to 3 GI	Ηz			45 days
E4433B	250 kHz to 4 GI	Hz	Temp. (0 to 55° C)	< ±1 ppm, typical	< ±0.05 ppm, typical
			Line voltage	< ±0.1 ppm, typical	< ±0.002 ppm, typical
ESG-DP series			0	(+5%, -10%)	(+5%, -10%)
E4434B	250 kHz to 1 G	47			(· · ·)
E4435B	250 kHz to 2 G		Timebase reference	e outnut	
E4436B	250 kHz to 2 G		Frequency	10 MHz	
E4437B	250 kHz to 4 G		Amplitude		into EQ Q load
E4437D	250 KHZ 10 4 GI	12	Ampiltude	> 0.30 V	$T_{\sf rms}$ into 50 Ω load
Underrange	100 kHz		External reference	e input	
			Frequency	1, 2, 5, 1	0 MHz
Resolution	0.01 Hz			± typica	l 10 ppm
					1 ppm, ESG-AP
Accuracy	Same as timeb	ase			SG-DP series,
					nd ESG-D
Switching speed (typical) ¹	ESG-A and	ESG-AP and			ption 1E5)
Switching speed (typical)	ESG-D series	ESG-DP series	Amplitude	> 0.15 V	rms
Modulation on	LOG-D Selles	LOG-DF Selles	Input impedance	50 Ω	
	< 50 ms	< 65 ms			
Analog	< 90 ms	< 100 ms	Output		
Digital			output		
Modulation off	< 40 ms	< 55 ms	Power ²	Standard	Option UNB
					•
Phase offset	•	able via GPIB or	250 kHz to 1 GHz	+13 to -136 dBm	+17 to -136 dBm
	front panel in n	ominal 0.1°	> 1 to 3 GHz	+10 to –136 dBm	+16 to –136 dBm
	increments		> 3 to 4 GHz	+7 to –136 dBm	+13 to –136 dBm
			Т	ypical maximum availa	ble power
Frequency bands					
	iency range	N #			
			8		

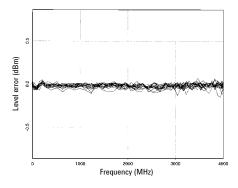
Power level (dBm) é 2 2 1000 2000 3000 4000 Frequency (MHz)

1. To within 0.1 ppm of final frequency above 250 MHz or within 100 Hz below 250 MHz.

2. With high performance pulse modulation (Option 1E6) installed, all maximum power specifications drop by 4 dB.

Specifications describe the instrument's warranted performance and apply after a 45 minute warm-up. All specifications are valid over the signal generator's entire operating/environmental range while in phase noise mode 2, unless otherwise noted. Supplemental characteristics, denoted typical or nominal, provide additional (nonwarranted) information useful in applying the instrument.

D	
Keen	lution
11030	iuuon


0.02 dB

Attenuator hold level range

	Standard	Option UNB
250 kHz to 1 GHz	23 dB	27 dB
> 1 to 3 GHz	20 dB	26 dB
> 3 to 4 GHz	17 dB	23 dB

Level accuracy (dB)¹

		Output power	
	+7 to –120 dBm		
	(+10 to -120 dB	8m, —120 to	
Freq range	Option UNB)	—127 dBm	<127 dBm
250 kHz to 2 GHz	±0.5	±0.5	(±1.5)
2 to 3 GHz	±0.9	±0.9	(±2.5)
3 to 4 GHz	±0.9	±0.9 (±1.5,	(±2.5)
		Option UNB)	

Typical level accuracy

Amplitude switching speed

Without power search	< 30 ms, typical
When using power search	< 300 ms, typical

Reverse power protection²

 250 kHz to 2 GHz
 50 watts

 > 2000 to 4 GHz
 25 watts

 Max DC voltage
 50 V

SWR (typical)

	Standard	Option UNB
250 kHz to 1 GHz	< 1.5:1	< 1.3:1
1 to 2 GHz	< 1.4:1	< 1.3:1
2 to 3 GHz	< 1.3:1	< 1.4:1
3 to 4 GHz	< 1.5:1	< 1.5:1
Output impedance	50 Ω	

Spectral purity

SSB phase noise³ (at 20 kHz offset)

	ESG-A and	ESG-AP and
	ESG-D Series	ESG-DP Series
at 500 MHz	(<-120 dBc/Hz)	<-134 dBc/Hz, (<-138 dBc/Hz)
at 1 GHz	(< -116 dBc/Hz)	<
at 2 GHz	(< -110 dBc/Hz)	< -123 dBc/Hz, (< -127 dBc/Hz)
at 3 GHz	(< -104 dBc/Hz)	< -120 dBc/Hz, (< -124 dBc/Hz)
at 4 GHz	(< -104 dBc/Hz)	<

Residual FM⁴ (CW mode, 0.3 to 3 kHz BW, CCITT, rms)

ESG-AP and ESG-DP series

< N x 1 Hz (< N x 0.5 Hz, typical)

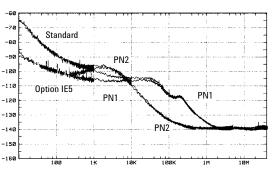
ESG-A and ESG-D series		
Phase noise mode 1	< N x 2 Hz	
Phase noise mode 2	< N x 4 Hz	

Harmonics

(\leq +4 dBm (\leq +7.5 dBm, Option UNB) output level) < -30 dBc (typical below 1 GHz)

Nonharmonics

(< +7 dBm (< +10 dBm, Option UNB) output level)⁵


	ESG-A andESG-AP and ESG-D series ⁶		ESG-DP series ⁷	
	> 3 kHz offset	> 10 kHz offset ³	> 3 kHz offset	> 10 kHz offset ³
250 kHz to 250 MHz 250 MHz to 500 MHz 500 MHz to 1 GHz 1 to 2 GHz > 2 GHz	<65 dBc (<65 dBc) (<59 dBc)	(< –75 dBc)	<80 dBc <80 dBc <74 dBc	<80 dBc <80 dBc <74 dBc

Subharmonics

	ESG-A and	
	ESG-D series	
≤1 GHz	None	
> 1 GHz	(< –40 dBc)	

ESG-AP and ESG-DP series None

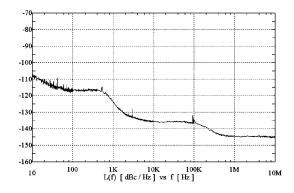
None

Characteristic ESG-A and ESG-D series SSB phase noise at 1 GHz (phase noise modes 1 and 2)

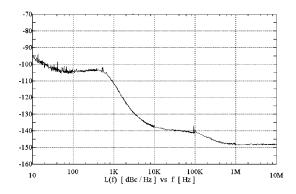
1. For 23 °C ±5 °C. Accuracy degrades by 0.02 dB/°C over the full temperature range and by 0.3 dB above +7 dBm (degraded by 0.5 dB above +10 dBm with Option UNB). Level accuracy specification maintained only with return to calibration.

2. The reverse power protection circuitry triggers at nominally 1 watt.

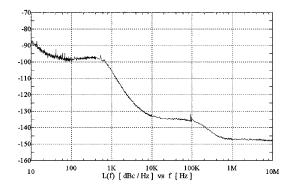
3. Parentheses denote typical performance.

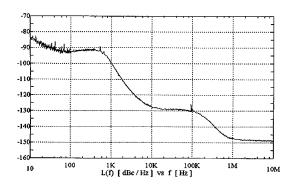

4. Refer to frequency bands on page 4 to compute specifications.

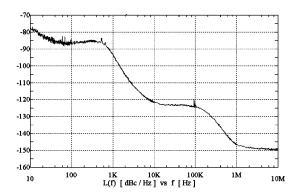
Performance is typical for spurs at frequencies above the maximum operating frequency of the instrument. Performance typically is -60 dBc between 225 and 249.999 MHz.
 Specifications apply for FM deviations < 100 kHz and are not valid for FM.

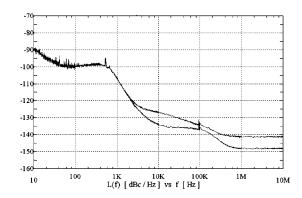

For non-constant amplitude digital formats, unspecified spur levels occur up to the second harmonic of the baseband rates.

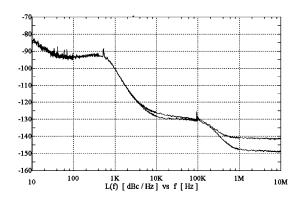
7. Specifications apply for CW mode only.


Characteristic SSB phase noise for ESG-AP and ESG-DP series


fc = 100 MHz (CW, standard instrument)


fc = 500 MHz (CW, standard instrument)


fc = 1 GHz (CW, standard instrument)


fc = 2 GHz (CW, standard instrument)

fc = 4 GHz (CW, standard instrument)

fc = 900 MHz (CW and I/Q modulation on)

fc = 1.8 GHz (CW and I/Q modulation on)

Jitter in µUI 1,2,3

Jitter in µ						1 11030 111	Juulation		
						Maximum d	leviation ⁵		
Carrier frequency	SONET/SDH data rates	rms jitter bandwidth	ESG-A (µUI R		i-AP, ESG-DP I RMS)		ESG-A a series		SG-AP and ESG-DP eries
155 MHz	155 MB/s	100 Hz to 1.5 MHz	(239)	(43)		Normal BW	N x 90 ra	adiana N	x 10 radians
622 MHz	622 MB/s	1 kHz to 5 MHz	(149)	(34)			N x 90 ration $N \times 9\pi$ r		x 1 radian
2.488 GHz	2488MB/s	5 kHz to 15 MHz	(375)	(73)		High BW	N X 5/L 1		
Jitter in s	econds ^{1,2,3}					Resolution		0.1% of set	deviation
Carrier frequency	SONET/SD data rates)H rms jitter bandwidth			Modulation frequency response ⁵ ESG-A and ESG-D series				
155 MHz	155 MB/s	100 Hz to 1.5	MHz	(1.54 ps)	(277 fs)		Maximum	Rates (3 dB BW)	
622 MHz	622 MB/s	1 kHz to 5 M	Hz	(240 fs)	(55 fs)	Mode	deviation	ΦM1	ΦM2
2.488 GHz	2488MB/s	5 kHz to 15 M	ЛНz	(151 fs)	(29 fs)			dc to 100 kHz	dc to 100 kHz
-		1 - 4'							
-	ncy modul deviation					High BW	N x 360 rad N x 90 rad	dc to 1.5 MHz (typ dc to 4 MHz (typ)) dc to 0.9 MHz (typ) dc to 1 MHz (typ)
	ESG-A an ESG-D se N x 10 M	eries	ESG-A ESG-D N x 1	P series			ESG-DP ser Maximum	Rates (3 dB BW)	ሙህን
						Mode	deviation	ФМ1	ΦM2
Resolutio	n	0.1% of deviat whichever is g		Hz,		Normal BW High BW	N x 10 rad N x 1 rad	dc to 100 kHz dc to 1 MHz (typ)	dc to 100 kHz dc to 1 MHz (typ)
Modulatio	n frequency Rates 1 dB ban	response (devia dwidth		l00 kHz) ⁴ andwidth,	typical	Deviation a	ccuracy		viation + 0.01 radian Iormal BW mode)
FM1 FM2		to 100 kHz to 100 kHz	dc/5 H	Iz to 10 MH Iz to 1 MHz	Hz			< 1% x 90 rad (dev < N x	10 rad for ESG-AP
								mal BW mode	
Deviation	accuracy ⁵			deviation + ation < N x 1		External inp	outs	Ext 1 or Ext 2	
Carrier fre		uracy relative				Sensitivity		1 V _{peak} for ind	dicated deviation
to CW in c	• •					Input imped	ance	50 Ω , nomina	I
		±0.1% of	set de	viation + (N	N X 1 Hz)				
	-					Paths Φ M 1	and ΦM 2 a	re summed interna	Ily for composite mo
Distortion ⁵ < 1% (1 kHz rate, THD, dev.= N x 100 kHz)			ulation. Either path may be switched to any one of the modulation sources: Int, Ext 1, Ext 2. The ΦM 2 path is limited						
External inputs		Ext 1 or I	Ext 2			to a maximu		//Hz. The Φ M 2 pat	
Sensitivity	/	1 V _{peak} f	or indic	ated deviat	tion				
Input imp	oanco	50 Ω, no	minal						
input imp	suance	50 22, 110	minai						

Phase modulation

Paths FM 1 and FM 2 are summed internally for composite modulation. Either path may be switched to any one of the modulation sources: Int, Ext 1, Ext 2. The FM 2 path is limited to a maximum rate of 1 MHz. The FM 2 path must be set to a deviation less than FM 1.

^{1.} Parentheses denote typical performance.

^{2.} Calculated from phase noise performance in CW mode only at +2.0 dBm for standard instruments, +5.0 dBm with Option UNB.

^{3.} For other frequencies, data rates, or bandwidths, please contact your sales representitive.

^{4.} Since the internal modulation source operates over 0.1 Hz to 50 kHz, FM rates above 50 kHz must be supplied externally.

^{5.} Refer to frequency bands on page 4 to compute specifications.

^{6.} At the calibrated deviation and carrier frequency, within 5 °C of ambient temperature at time of calibration.

Amplitude modulation¹ (fc > 500 kHz)

Range	0 to 100%	On/off ratio < 3 GHz	> 80 dB
(envelope peak \leq maximum sp	becified power)	≤ 3 GHz	> 60 dB
B 1.4	0.1%		> 00 db
Resolution	0.1%	Rise/fall times	150 ns, typical
Rates (3 dB bandwidth)	dc/10 Hz to 10 kHz	Minimum width	
. (1.1.1		ALC On	2 μs, typical
Accuracy (1 kHz rate)	$< \pm (6\% \text{ of setting} + 1\%)^1$	ALC Off	0.4 µs, typical
Distortion (1 kHz rate, THD)		Pulse repetition frequency	
30% AM	< 2.0%	ALC On	10 Hz to 250 kHz, typical
90% AM	< 4%, typical	ALC Off	dc to 1.0 MHz, typical
External inputs	Ext 1 or Ext 2	Level accuracy	< ± 0.5 dB, typical \leq 3 GHz
			$< \pm 0.8$ dB, typical ≤ 4 GHz
Sensitivity	1 V _{peak} for indicated depth		(relative to CW) ²
	poun		
Input impedance	50 Ω , nominal	External input	Ext 2
Paths AM 1 and AM 2 are su	Immed internally for composite mod-	Input voltage	
	vitched to any one of the modulation	RF on	> +0.5 V, nominal
sources: Int, Ext 1, Ext 2.		RF off	< +0.5 V, nominal
3001003. mt, Ext 1, Ext 2.			F0 C i i
Wideband AM (ESC D	P and ESG-D series only)	Input impedance	50 Ω, nominal
vviueballu Alvi (ESU-D	anu ESU-D Series Ully)		
		Internal pulse generator	0.1 Hz to 50 kHz
Rate (1 dB bandwidth, typical)	Square wave rate	

Pulse modulation

Rate (1 dB bandwidth, typ	ical)	Square wave rate	U.T HZ LO DU KHZ
ALC On	, 400 Hz to 10 MHz	Pulse	
ALC Off	dc to 10 MHz	Period	16 µs to 30 sec
		Width	8 µs to 30 sec
External input	l input	Resolution	4 µs
Sensitivity	0.5 V = 100%	High-performance	pulse modulation
		(Option 1E6, ESG-)	AP and ESG-A series) ³
Input impedance	50 Ω , nominal		
		On/off ratio	
		≤ 2 GHz	> 80 dB
		> 2 CH-	> 70 JD

> 2 GHz> 70 dBRise/fall times< 10 ns</td>Delay< 60 ns, typical</td>External inputPulse inInput voltage+5 V (with RF on, TTL compatible)

Input impedance

2. With ALC off, specifications apply after the execution of power search. With ALC on, specifications apply for pulse repetition rates \leq 10 kHz and pulse widths \geq 5 µs.

^{1.} AM is typical above 2 GHz or if wideband AM or $\rm I/O$ modulation is simultaneously enabled.

^{3.} With high performance pulse modulation (Option 1E6) installed, all maximum power specifications drop by 4 dB.

Internal modulation source

(Provides FM, Φ M, and AM modulation signals and LF out)

Waveforms	sine, square, ramp, triangle, pulse, noise
Rate range Sine Square, ramp, triangle	0.1 Hz to 50 kHz 0.1 Hz to 10 kHz
Resolution Pulse only	0.1 Hz 4 μs
Frequency accuracy	0.005%, typical
Swept sine mode (frequency, p Operating modes Frequency range Sweep time Resolution	hase continuous) Triggered or continuous sweeps 0.1 Hz to 50 kHz 1 ms to 65 sec 1 ms

0.1 Hz to 50 kHz

0 to 100%

0.1%

External modulation inputs

Modulation types

Ext 1	FM, Φ M, AM, and burst envelope
Ext 2	FM, Φ M, AM, and pulse

High/Low Indicator (100 Hz to 10 MHz BW, AC coupled inputs only) Activated when input level error exceeds 3% (nominal)

Simultaneous modulation

All modulation types may be simultaneously enabled, except: FM with FM; AM with burst envelope; Wideband AM with I/Q. AM, FM, and FM can sum simultaneous inputs from any two sources (INT, EXT 1, and EXT 2.) Any given source (INT, EXT 1, or EXT 2) may only be routed to one activated modulation type.

LF out	(internal	modulation	source)

Dual sinewave mode Frequency range

Amplitude ratio resolution

Amplitude ratio

Amplitude	0 to 3 V_{peak} into 50 Ω
Output impedance	<1Ω

Specifications for digital models only

Level accuracy with digital modulation

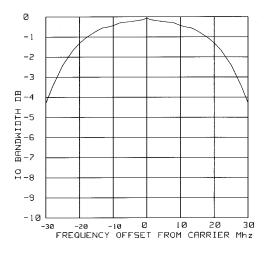
(ESG-DP and ESG-D series only)

With ALC On; relative to CW; with PRBS modulated data; if using I/Q inputs, $\sqrt{1^2 + Q^2} = 0.5 V_{rms}$, nominal)¹

π /4 DQPSK or QPSK formats				
ESG-D series	ESG-DP series			
±0.20 dB	±0.20 dB	\leq 3 GHz		
±0.30 dB	±0.30 dB	> 3 GHz		

(Relative to CW; with raised cosine or root-raised cosine filter and $\alpha \ge 0.35$; with 10 kHz \le symbol rate ≤ 1 MHz; at RF freq ≥ 25 MHz; power \le max specified -3 dB or -6 dB with Option UNB)

Constant amplitude formats (FSK, GMSK, etc)				
ESG-D series	ESG-DP series			
±0.20 dB	±0.20 dB			


Level accuracy with ALC off² ±0.3 dB, typical (After power search is executed; relative to CW level accuracy with ALC on; with burst off; if external I/Q is enabled $\sqrt{I^2 + Q^2} = 0.5 V_{rms}$)

I/Q modulation

(ESG-DP and ESG-D series only)

I/Q inputs

Input impedance Full scale input¹ $\frac{50 \Omega}{\sqrt{I^2 + \Omega^2}} = 0.5 V_{rms}$

Typical I/Q frequency response

Adjustments / Impairments (nominal)

External burst envelope

(ESG-DP and ESG-D series only)

Input voltage	
RF On	0 V
RF Off	–1.0 V
Linear control range	0 to –1 V

On/off ratio

≤3 GHz	> 75 dB
> 3 GHz	> 60 dB
V _{in}	≤ –1.05 V

Rise/fall time

< 2 µs with rectangular input, typical

Minimum burst repetition frequency

ALC on	10 Hz, typical
ALC off	dc

External input	Ext 1
----------------	-------

Input impedance 50 Ω , nominal

Coherent carrier out³

(ESG-DP and ESG-D series only)

Range	250 MHz to maximum carrier frequency
Level	0 dBm ±5 dB, typical

Impedance 50 Ω

^{1.} The optimum I/Q input level is $\sqrt{I^2+Q^2} = 0.5 V_{rms}$, I/Q drive level affects EVM, origin offset, spectral regrowth, and noise floor. Typically, level accuracy with ALC on will be maintained with drive levels between 0.25 and 1.0 V_{rms}.

^{2.} When applying external I/Q signals with ALC off, output level will vary directly with I/Q input level. Power search is an internal calibration routine used to set output power when ALC is off. The routine disables all modulation inputs, adjusts output power while applying 0.5 V_{rms} to the I/Q modulathen enables modulation.

^{3.} Coherent carrier is modulated by FM or ΦM when enabled.

I/Q baseband generator

(Option UN8, ESG-DP and ESG-D series only)

Modulation

modulation	
PSK	BPSK, QPSK, OQPSK, π/4DQPSK, 8PSK, 16PSK, D8PSK
MSK	User-defined phase offset from 0 to 100°
QAM	4, 16, 32, 64, 256
FSK	Selectable: 2, 4, 8, 16 level symmetric
Custom:	Custom map of up to 16 deviation levels
Deviation:	Modulation index \leq 1,
	≤ 1.5 Msym/sec
	Modulation index \leq 0.5, \leq 2.0 Msym/sec
Resolution:	0.1 Hz
I/Q:	Custom map of 16 unique values
	for I and Q
Filter	
Selectable	Nyquist, root Nyquist, Gaussian,
	rectangular
	lpha: 0 to 1, B _b T: 0.1 to 1
Custom FIR	256 coefficients, 16-bit resolution,

Symbol rate

For external data or internal PN sequences in pattern mode, symbol rate is adjustable from 200 symbols/sec to maximum listed in table.

scaled

16 symbols long, automatically

Bits/symbol	Maximum symbol rate (Msym/sec)	Maximum data rate (Mbits/sec)
1	12.5	12.5
2	12.5	25
3	8.33	25
4	12.5	50
5	10	50
6	8.33	50
7	7.14	50
8	6.25	50

For all other data types and data structures the maximum bit rate is 5 Mbits/sec.

TDMA data structure

Frames and timeslots may be configured as different types of traffic or control channels. The data field of a timeslot can accept a user file, PRBS (PN9 or PN15), or external data. Maximum bit rate is 5 Mbits/sec.

Reference frequency

Internal or external 1, 2, 5, 10 MHz reference Data clock can be locked to an external 13 MHz (GSM) reference

Frame trigger delay control

Range 0 to 65.535 bits Resolution 1 bit

Data types

Internally generated data Pseudo-random patterns	(meets ITU-T standard)
	Continuous PN9 (PRBS 29-1) PN11
	(PRBS 2 ¹¹ –1), PN15 ¹
	(PRBS 2 ¹⁵ –1), PN20 (PRBS 2 ²⁰ –1),
	PN23 (PRBS 2 ²³ –1).
Repeating sequence	Any 4-bit sequence
Downloadable data	
Maximum bit rate	5 Mbits/sec
Direct-pattern RAM (PRA	M)
Max size	1 Mbytes (standard)
	8 Mbytes (Option UN9)
Use	Nonstandard framing
User file	
Max size	128 kbytes
Use	Continuous modulation or internally
	generated TDMA standard
Externally generated data	
Туре	Serial data

Serial data Data, bit/symbol clocks Accepts data rates ±5% of specified data rate

Internal burst shape control

Varies with standards and	bit rates
Rise/fall time range	Up to 30 bits
Rise/fall delay range	0 to 63.5 bits

I/Q outputs

Inputs

(Baseband I/Q outputs can be scaled from 0 to 1 V $_{\rm peak-to\ peak}$ into 50 Ω)²

Standard	Default scaling	Maximum V (rms)
NADC, PHS, PDC	100	0.25
TETRA	65	0.25
GSM, DECT	N/A	0.35

EVM (NADC, PDC, PHS, TETRA)³ 1% rms 0.75° rms Global phase error (GSM)³ Deviation accuracy (DECT)³ 1 kHz rms

I/Q outputs

(Baseband I/Q outputs can be scaled from 0 to 1 $V_{peak-to peak}$ into 50 Ω)⁴

Custom format ⁵	Default scaling	Maximum V (rms)
FSK, MSK	NA	0.35
QPSK, BPSK	70	0.32
8PSK, 16PSK, D8PSK	70	0.20
π/4DQPSK	70	0.25
QAM	70	> 0.10

^{1.} PN15 is not continuous in bursted mode when TETRA is operated in a downlink mode.

2. Baseband I/Q ouputs cannot be scaled for GSM and DECT.

5. Filter factor (a or BbT) is set to 0.5.

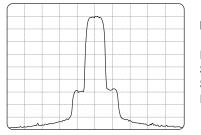
^{3.} Specifications apply for the frequency range, symbol rates, root Nyquist filter, filter factors, and default scaling factor specified for each standard.

^{4.} Baseband I/Q outputs cannot be scaled for FSK and MSK.

Digital communications standards

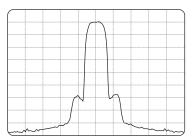
	NADO	; 5	PDC		PHS		TETR	A	DECT	GSM (DC	S,PCS)
Error vector magnitude ¹ (% rms)	Continuous	Burst	Continuous	Burst	Continuous	Burst	Continuous	Burst	N/A	N//	Ą
Low EVM mode	0.7	1.4	0.9	1.3	0.9	1.0	0.8	1.7			
Low EVM mode (typical)	0.4	1.1	0.6	0.9	0.6	0.8	0.5	1.3			
Low ACP mode (typical)	1.0	1.4	0.8	1.0	0.9	0.9	0.9	1.5			
Global phase error ¹ (rms/pk)	N/A	l.	N/A	A	N/A	Ą	N//	Ą	N/A	0.6°/2.2 0.3°/1.3	
Deviation accuracy ¹ (kHz)	N/A	1	N/A	۱	N//	4	N/	Α	3 (2, typ)	N/.	A
Channel spacing (kHz)	30		25		300		25		1,728	200	
Adjacent channel power ¹ (ACP)	Continuous	Burst	Continuous	Burst	Continuous	Burst	Continuous	Burst ²	N/A	Continuous	Burst
(Low ACP Mode, dBc, typical)											
at adjacent channel ³	- 35	- 34	-	-	-	-	- 66 ⁴	- 63		- 37	- 37
at 1st alternate channel ³	- 79	- 77	- 70	- 70	- 78	- 78	- 80	- 78		- 70	- 70
at 2nd alternate channel ³	- 82	- 80	-	-	- 80	- 79	- 81	- 80		- 81	- 79
at 3rd alternate channel ³	- 83	- 82	- 81	- 79	-	-	- 81	- 80		- 81	- 80
Supported burst types	/pes Custom, Custom, up/downTCH up/down TCH up Vox		TCH,	Custor TCH, s		Custom, up contro up norma down nor down syr	ol 1 & 2 I, rmal,	Custom, dummy B 1 & 2 traffic B low capacity	Custom, n FCorr, syn dummy, a	C,	
Scramble capabilities					Yes		Yes	3			

^{1.} Specifications apply for the symbol rates, root raised cosine filter, filter factors (a or BbT) and default scaling factor specified for each standard, and at power levels \leq +7 dBm (\leq +10 dBm, Option UNB).


^{2.} ACP for TETRA is measured over a 25 kHz bandwidth, with an 18 kHz root raised cosine filter applied at power levels < +4 dBm (< +8 dBm, Option UNB).

^{3.} The "channel spacing" determines the offset size of the adjacent and alternate channels: Adjacent channel offset = 1 x channel spacing,

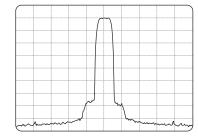
¹st alternate channel = 2 x channel spacing, 2nd alternate channel = 3 x channel spacing, etc. 4. TETRA ACP performance is typically < -69 dBc with Option H99 in continuous modulation mode.


^{5.} Supports IS-54 and IS-136 traffic channels only.

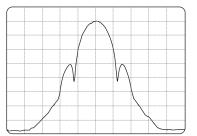
Digital communications standards

NADC spectrum

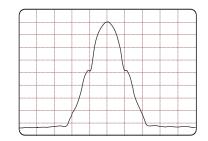
Fc = 849 MHz Span = 0.3 MHz Scale = 10 dB/div Level = +4 dBm


PDC spectrum

 $\label{eq:Fc} \begin{array}{l} \mathsf{Fc} = 810 \mbox{ MHz} \\ \mathsf{Span} = 0.25 \mbox{ MHz} \\ \mathsf{Scale} = 10 \mbox{ dB/div} \\ \mathsf{Level} = +4 \mbox{ dBm} \end{array}$


PHS spectrum

Fc = 1907 MHzSpan = 2 MHz Scale = 10 dB/div Level = +4 dBm

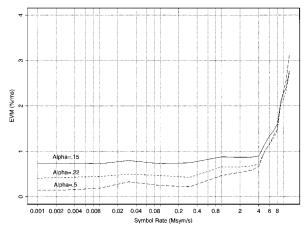

TETRA spectrum

Fc = 400 MHzSpan = 0.25 MHz Scale = 10 dB/div Level = +4 dBm

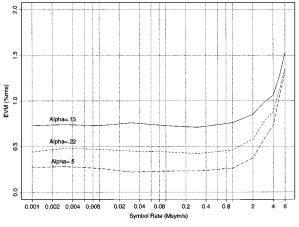
DECT spectrum

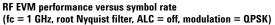
Fc = 1800 MHz Span = 7 MHz Scale = 10 dB/div Level = +4 dBm

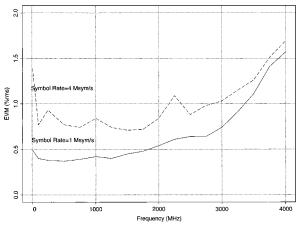
GSM spectrum


Fc = 920 MHz Span = 2 MHz Scale = 10 dB/div Level = +4 dBm

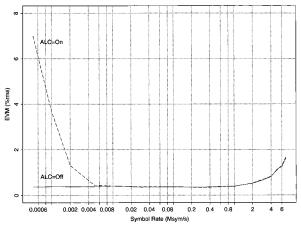
Custom digitally modulated signals

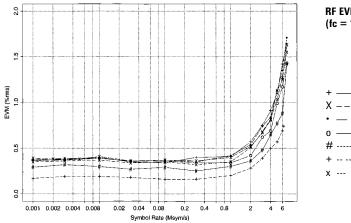

Modulation	QPSK	π/ 4DQPSK	160AM	2FSK	GMSK
Filter		Root Nyquist		Gai	issian
Filter factor ($lpha$ or B _b T)	0.25	0.25	0.25	0.5	0.5
Modulation index	N/A	N/A	N/A	0.5	N/A
Symbol rate (Msym/s)	4	4	4	1	1
	E	Error vector magnitude ¹		Shift error ^{1,2}	Global phase error ^{1,2}
		(% rms)	(% rms)		(degrees rms)
fc = 1 GHz	(0.9)	(0.9)	(0.8)	(0.7)	(0.2)
fc = 2 GHz	(1.0)	(1.0)	(1.0)	(0.7)	(0.2)
fc = 3 GHz	(1.5)	(1.5)	(1.4)	(0.8)	(0.4)
fc = 4 GHz	(2.8)	(2.6)	(3.5)	(1.0)	(0.5)


Typcal performance (power levels \leq + 4 *dBm* [\leq + 8 *dBm, Option UNB*])


PSK formats



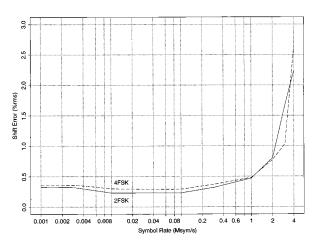

Baseband EVM performance versus symbol rate (root Nyquist filter, modulation = QPSK)

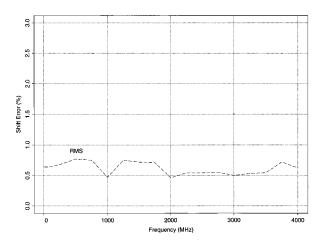


Effects of automatic level control (ALC) on EVM performance (fc = 1 GHz, root Nyquist filter, a = 0.25, modulation = QPSK)

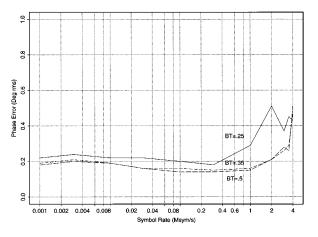
1. Specifications apply at power levels \leq +4 dBm, Option (UNB) with default scale factor of I/Q outputs.

^{2.} Parentheses denote typical performance.

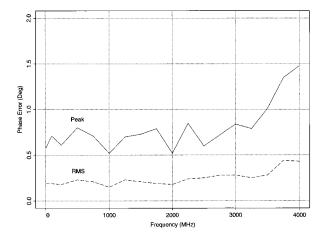

Non-constant amplitude formats


RF EVM performance versus symbol rate (fc = 1 GHz, root Nyquist filter, a = 0.25)

FSK formats



Shift error versus symbol rate (fc = 1 GHz, Gaussian filter, BbT = 0.5, modulation index = 0.5)



Shift error versus frequency (Gaussian filter, BbT = 0.5, modulation index = 0.5, symbol rate = 1Msys/s)

MSK formats

Phase error versus frequency (Gaussian filter, BbT = 0.5, symbol rate = 1Msys/s)

Dual arbitrary waveform generator

(Option UND, ESG-DP and ESG-D series only)						
Number of channels	2					
Resolution	14 bits (1/16384)					
<i>Waveform memory</i> Length (playback) Length (storage)	1 Megasample/channel 1 Megasample/channel in non-volatile RAM					
<i>Waveform segments</i> Segment length Number of segments	16 samples to 1 Megasample 1 to 128 (even number of samples)					
Waveform sequences Sequencing Number of sequences Segments/sequence Segment repetitions	Continuously repeating 1 to 128 1 to 65,535 1 to 4,095					
<i>Clock</i> Sample rate Resolution Accuracy	1 Hz to 40 MHz 1 Hz Same as timebase					
<i>Output reconstruction filte</i> Type Frequency cutoff (nominal, 3 dB)	Prs Elliptic 250 kHz, 2.5 MHz, 8 MHz, and through (user-supplied external filter)					
Baseband spectral purity (typical, full scale sinewave, >20 x Harmonic distortion ≤ 100 kHz 100 kHz to 2 MHz	oversampling) < –80 dBc < –65 dBc					
Non-harmonic spurious (spur frequencies ≤10 MHz)	<80 dBc					
Phase noise (baseband output of 1 MHz sinewa	< –120 dBc/Hz ave at 20 kHz offset)					
IM performance (two sinewaves at 950 kHz and 109	< –69 dB 50 kHz at baseband, full scale)					
Triggers						

Types

Source External polarity External delay time Continuous, single, gated, segment advance Trigger key, bus, external Negative, positive 2 µs to 3.6 ksec

Markers

(Markers are defined in a segment during the waveform generation process, or from the ESG front panel. A marker can also be tied to the RF blanking feature of the ESG.) Marker polarity Negative, positive

Bluetooth (UND)

Packet type Select Bluetooth device address (BD ADDR) Active member address (AM ADDR) Payload data

Impairments Frequency offset Resolution Frequency drift/packet Linear or Sinusoidal Resolution Modulation index Resolution Symbol timing error Resolution AWGN with adjustable C/N Resolution Burst Resolution Clock/gate delay Resolution Other formats (UND)

DH1

12 Hex digits

0 to 7 8-bit repeating pattern **Truncated PN9** Continuous PN9

-100 kHz to +100 kHz 1 kHz

-100 kHz to +100 kHz 1 kHz 0.250 to 0.400 .001 -50 ppm to 50 ppm 1 ppm -10 dB to -40 dB 1 dB 1 to 10 #symbol/ramp 1 symbol/ramp 0 to 24999.9 symbols 0.1 symbols

NADC, PDC, PHS, GSM, DECT, TETRA, APCO25, CDPD, PWT, **EDGE** and custom

Multicarrier

Number of carriers Frequency offset (per carrier) -7.5 MHz to +7.5 MHz Power offset (per carrier)

Modulation PSK

QAM FSK Level symmetric MSK

Data

Multitone

Number of tones

Frequency spacing Bandwidth Phase (per tone)

Additive white Gaussian noise Bandwidth Waveform lengths

Noise seeds

Up to 64 (limited by a max bandwidth of 15 MHz) 0 dB to -40 dB

BPSK, QPSK, OQPSK, $\pi/4$ DQPSK, 8PSK, 16PSK, D8PSK 4, 16, 32, 64, 256 Selectable: 2, 4, 8, 16

Random ONLY (For external data, bursting and framing refer to real-time I/Q baseband generator, Option UN8)

2 to 64, with selectable on/off state per tone 100 Hz to 5 MHz Up to 16 MHz, typical 0 to 360 degrees

50 kHz to 15 MHz 16, 32, 64, 128, 256, 512, 1024 ksamples Fixed, random

Multichannel, multicarrier **CDMA** personality

(Option UN5, ESG-DP and ESG-D series only)

Chip (symbol) rate	1.2288 MHz (default) Adjustable from 1 Hz to 10 MHz with 4x oversampling	IS-95 fi	ilte
Modulation			

with Walsh and short code spreading QPSK (forward) Offset QPSK (reverse) with short code spreading of random data

Pre-defined channel configurations

(power levels per IS-97	7-A)
Pilot channel	Íncludes IS-95 modified filter, with equalizer
9 channel	Includes pilot, paging, sync, 6 traffic and
	IS-95 modified filter, with equalizer
32 channel	Includes pilot, paging, sync, 29 traffic and
	IS-95 modified filter, with equalizer
64 channel	Includes pilot, 7 paging, sync, 55 traffic and
	IS-95 modified filter, with equalizer
Reverse channel	Includes IS-95 filter

Rho 0.9996 $(\leq 4 \text{ dBm}, \text{ IS-95 filter}, \leq 2 \text{ GHz}, \text{ typical})$

Pilot time offset $\leq 2 \, \mu s$, typical

User-defined CDMA

1 to 256
0 to 63
0 to40 dB
0 to 511
00-FF(HEX) or random

Multichannel CDMA spurious emissions¹ (dBc, with high crest factor on)

	0.88	5 to 1.25 MHz		1.	25 to 1.98 MH	z		1.98 to 5 N	lHz ²
Channels/offsets	Standard	Option UNB	Option H99 (Rev B)	Standard	Option UNB	Option H99 (Rev B)	Standard	Option UNB	Option H99 (Rev B)
Reverse (at \leq 0 dBm)									
30 – 699 MHz	-66 (-72)	-70 (-75)	-71 (-75)	(76)	(78)	(77)	(79)	(—79)	(79)
700 – 1000 MHz	-68 (-73)	-72 (-76)	-78 (-79)	(76)	(79)	(81)	(79)	(79)	(80)
1000 – 2000 MHz	-63 (-66)	-70 (-74)	-78 (-79)	(—70)	(78)	(81)	(—79)	(79)	(80)
9/64 channels (at ≤ –2 dBm)									
30 – 699 MHz	-65 (-68)	-68 (-71)	-70	(73)	(—76)	(72)	(78)	(—78)	(—80)
700 – 1000 MHz	-64 (-70)	-69 (-73)	-73 (-75)	(—75)	(—77)	(78)	(79)	(—79)	(—80)
1000 – 2000 MHz	-60 (-63)	-67 (-71)	-72 (-73)	(68)	(—75)	(—77)	(78)	(—78)	(—80)

s only)	Us
ault) 1 Hz to	IS-95 filter selection

IS-95 IS-95 with equalizer IS-95 modified IS-95 modified with equalizer All are IS-95 compliant. "Modified" filters reduce spurious emissions for adjacent channel power measurements.

IS-97 compliant

User-defined

Equal channel power . Scaled to 0 dB

Walsh code power selection

Other FIR filters

er	Nyquist, root Nyquist Gaussian Custom FIR	$\alpha = 0$ to 1 $B_bT = 0.1$ to 1 Up to 256 coefficients 16-bit resolution Automatically scaled
d	<i>Oversample ratio</i> Range Resolution	2 to 8 1
	Multicarrier	
	Number of carriers	3 or 4 (predefined), up to 12 (user-defined)
	Carrier channels	Pilot, 9 channel, 32 channel, 64 channel, reverse, custom
	Frequency offset	
	(per carrier) Offset resolution	±7.5 MHz < 100 Hz
	Carrier power	
	(per carrier)	0 dB to40 dB
	Clipping	
	Clip location	Pre or post FIR filter
	Clipping type	l+jQ , l and Q 10% to 100%
	Clipping range	

(clip the modulation level to a percentage of full scale. A level of 100% equates to no clipping)

1. Parentheses denote typical performance.

2. Specifications apply with high crest factor off.

Bit Error Rate (BER) analyzer

(Option UN7, ESG-DP and ESG-D series only)

100 Hz to 10 MHz

Supported data patterns PN9 and PN15

Clock rate

Resolution	10 digits (6 digits for BER (exp))			
Minimum synchronization length2 Mbps mode9 bits (PN9), 15 bits (PN15)10 Mbps mode43 bits (PN9), 48 bits (PN15)				
Bit sequence length	100 bits to 4.294 Gbits after synchronization		Gbits after	
Features	2 MI	ops mode	10 Mbps mode	
Real-time display				
Bit count	Х	х		
1 /	X X	х		
Bit count		Х		
Bit count Error-bit-count	X	x x		
Bit count Error-bit-count Bit error rate	X X			
Bit count Error-bit-count Bit error rate Pass/fail indication	X X X	X		

GSM/EDGE base station Bit Error Rate Test (BERT)

(ESG-D series only) (Option 300 requires Option UN8 revision C or better. Option UNA is highly recommended. The following are required:

GSM BTS test only

E4406A VSA-series transmitter tester with Options BAH (EDGE measurement personality) and 300 Rev. A (321.4 MHz output).

GSM/EDGE BTS test

E4406A VSA-series transmitter tester with Option 202 (GSM and EDGE measurement personality) and Option 300 Rev. B (321.4 MHz output). ESG firmware Option 202, EDGE personality, is also required. To upgrade from Option 300 Rev. A to Option 300 Rev. B requires new hardware.

See configuration guide for a bundled ordering convenience.

Test technique

Supported systems

GSM 400 GSM 850 GSM 900 (P-GSM) DCS 1800 PCS 1900 E-GSM (extended)

RF loopback

Minimum power level Maximum power level Power level accuracy

Relative power level

Timeslot under test timeslots tested

Encryption

Measurement triggers

Measurement indication

BCH sync

Threshold

GSM output data

Channel content Data

Frame structure

Adjacent timeslots Data

Frame structure

-136 dBm (ESG minimum) +13 dBm (ESG maximum) ±0.5 dB (23° ± 50 °C)

0 to ±130 dB relative to timeslot under test. (Limited only by output power range of the ESG. Based on Option UNA specification.)

0 to 7 A single timeslot is tested at one time. (No frequency hopping.)

None

Immediate, trigger key, bus, external

Pass/fail

BCH signal from the BTS is used to determine TCH frame and multiframe location.

Termination of measurement when error count exceeds user specified threshold.

Full-rate speech (FS) PN9, PN15 coded as per ETSI GSM, 05.03 version 3.6.1 (Oct 94).

26-frame TCH multiframe structure as per ETSI GSM, 05.01 version 6.1.1 (1998-07).

PN9, PN15 coded as per ETSI, GSM, 05.03 version 3.6.1 (Oct 94).

26-frame TCH multiframe structure as per ETSI GSM, 5.01 version 6.1.1 (1998-07).

^{1.} Perch power level is 3 dB below DPCH power.

^{2.} DPCCH power level is 6 dB below DPDCH power.

Measurements		Adjacent timeslots Data	Continuous uncoded PN9.
Results	Class lb bit-error ratio (RBER for TCH/FS) Class II bit-error ratio (RBER for TCH/FS) Frame erasure ratio (FER) Downlink error frame count Class lb bit-error count	Data	PN15 or coded MCS-5 or MCS-9 with PN9 or PN15 sequence data payload. Note: Maximum of 4 timeslots can be turned on with EDGE/EGPRS multiframe coded data.
	Class II bit-error count Class II bit-error count Erased frame count Total frame count	Frame structure	EDGE/EGPRS PDCH multiframe. Repeating EDGE frame.
		Measurements	
Maximum RBER Maximum FER	100% 100%	Results	Payload bit error count/rate for raw BER.
Measurement modes Static reference Sensitivity test (BER%)	RBER at user-specified power level measured. (This is the complete conformance test as defined in pri-ETS 300 609-1 (GSM 11.21) version 4.12.0 (Dec 98), section 7.3.4.		Total burst count for raw BER. Erased data block count/rate for coded channel (MCS-5 or MCS-9). Total data block count for coded channel (MCS-5 or MCS-9). Data block count which contains residual bit errors and bit error count.
BER sensitivity search	Automatically finds the input level (sensitivity) that causes a user specified RBER (normally 2%) for class II bits.	Measurement modes static reference sensitivity test (BER%)	BER at user-specified power level measured; based on bit errors in total unencoded data.
Maximum frame count	6,000,000 speech frames	Sensitivity search	BER/BLER

EDGE/EGPRS output data

Channel content	Continuous PN9 or PN15 Sequence for raw BER Continuous PN9 or PN15 Sequence on header and data payload.
Data	Fully coded MCS-5 and MCS-9; channel coding provided on PN9 or PN15 for data payload. Coding is done on frames 0 – 11, 13-24, 26-37, 39-50 on a 52 PDCH multiframe. The selected signal pattern is inserted continuously across the full payload.
Frame structure	52-frame multiframe structure for EDGE/EGPRS channel as per ETSI GSM 05.01 release 99. Frames 12, 25, 38 and 51 are empty (no burst).

Baseband BER (Bit Error Rate) tester (Included with Option 300; cannot be ordered separately.)

Clock rate	100 Hz to 10 MHz
Supported data patterns	PN9 and PN15
Resolution	10 digits (6 digits for BER (exp))
<i>Minimum synchronizatio</i> 2 Mbps mode 10 Mbps mode	on length 9 bits (PN9), 15 bits (PN15) 43 bits (PN9), 48 bits (PN15)
Bit sequence length	100 bits to 4.294 Gbits after synchronization
Features	

	2 Mbps mode	10 Mbps mode
Real-time display		
Bit count	Х	Х
Error-bit-count	Х	
Bit error rate	Х	
Pass/fail indication	Х	Х
Valid data and clock detection	Х	Х
Automatic re-synchronization	Х	
Special pattern ignore	Х	

Multichannel Multicarrier 3GPP W-CDMA personality

(Option 100, ESG-DP and ESG-D series only)

Supports R99 March 2001 3GPP W-CDMA standard. Provides partially coded data for component test applications.

10 ms

 $\alpha = 0.22$

 α = 0 to 1

resolution

250 kHz, 2.5 MHz

8.0 MHz, and through

 $B_{h}T = 0$ to 1

3.84 Mchips/sec ± 10%

<u>01</u>	
Thir	ratac
UIIIL	rates

Frame duration

Filters W-CDMA Nyquist, root Nyquist Gaussian IS-95 IS-2000 **Custom FIR**

Rectangle APCO 25 c4FM **Reconstruction filters**

I/Q mapping

Clip location

Clipping type

Clipping range

Clipping

Normal, invert

Pre-or post-FIR filter |I+jQ|, |I| and |Q|10% to 100% (Clip the modulation level to a percentage of full scale. A level of 100% equates to no clipping.)

Up to 256 coefficients, 16-bit

Downlink

QPSK Modulation Pre-defined channel configurations (partially coded) 1 DPCH 3 DPCH PCCPCH + SCH PCCPCH + SCH + 1 DPCH PCCPCH + SCH + 3 DPCH Test Model 1 with 16, 32, or 64 DPCH Test Model 2 Test Model 3 with 16 or 32 DPCH Test Model 4

User-defined channel parameters

Symbol rates 7.5, 15, 30, 60, 120, 240, 480, or 960 ksps Up to 512 Number of channels 0 to 511 Spreading code Channel power 0 to -40 dB, 0.01 dB resolution tDPCH offset 0 to 149 Scrambling code 0 to 511 Scramble types Standard, left alternate, right alternate Random, 00 to FF (HEX), PN9 Data pattern TPC power -20 to 20 dB relative to channel power **TPC** value 0-5555 **TFCI** field On /Off **TFCI** value 0-1023 **TFCI** power -20 to 20 dB relative to channel power -20 to 20 dB relative to channel Pilot power power Pilot bits 4 or 8

Channel Types (downlink)

PICH, OCNS, PCCPCH, SCCPCH, PSCH, SSCH, CPICH, DPCH DPCCH, DPDCH

Up to 4 (user defined, individually

configurable)

OCOPSK (HPSK)

< 1 Hz 0 dB to -40 dB

Up to ±7.5 MHz

Multicarrier

(uplink)

Number of carriers Frequency offset (per carrier)

Offset resolution Carrier power (per carrier)

Uplink Modulation

1 DPCCH

Pre-defined channel configurations (partially coded) 15 ksps, spread code 0 DPCCH + 1 DPDCH 960 ksps, spread code 1 DPCCH + 2 DPDCH 960 ksps, spread code 1 DPCCH + 3 DPDCH 960 ksps, spread code 2 DPCCH + 4 DPDCH 960 ksps, spread code 2 DPCCH + 5 DPDCH 960 ksps, spread code 3 User-defined channel parameters

Symbol rates 15, 30, 60, 120, 240, 480, or 960 ksps Number of DPDCH 6 channels Spreading code 0 to 511, symbol rate Scrambling code 1 to 1FFFFFFFFF, common for all channels Second DPDCH orientation

l or Q 0 to --60 dB Random, 00 to FF (HEX), PN9 0-2

Error vector magnitude¹

Channel power

Data pattern

FBI bits

1.8 GHz < f_c < 2.2 GHz, default W-CDMA filters, 3.84 Mcps chip rate, \leq 4 dBm, (\leq 7 dBm with Option UNB) 1 DPCH (2.3%)

Adjacent channel power^{1,2}

1.8 GHz < f_c < 2.2 GHz, default W-CDMA filters, 3.84 Mcps chip rate, \leq –2 dBm, (\leq 0 dBm with Option H99), 5 MHz offset

	Electronic	Mechanical	Low ACP
	attenuator	attenuator	(Option H99
	(standard)	(Option UNB)	Rev B)
1 DPCH Test Model 1 + 64 DPCH	(–58 dBc) (–50 dBc)	(–58 dBc) (–55 dBc)	–64 (–66 dBc) –60 (–63 dBc)

Alternate channel power^{1,2}

1.8 GHz < fc < 2.2 GHz, default W-CDMA filters, 3.84 Mcps chip rate, ≤ -2 dBm (0 dBm with Option H99 and baseband filter ON), 10 MHz offset

	Low ACP (Option H99)
1 DPCH	_70 (_72 dBc)
Test model 1 + 64 DPCH	−66 (−68 dBc)

1. Parentheses denote typical performance.

Multichannel cdma2000 personality

(Option 101, ESG-DP and ESG-D series only)

This personality conforms to cdma2000 specification revision 8. Provides partially coded data for component test applications.

Forward link		(825 to 2100 MHz, SR3 pilot.	IS-95 filter, which is optimized
Formword link		EVM	< 2.1%
Power offset	0 dB to -40 dB		
(per carrier)	-7.5 MHz to +7.5 MHz	Data pattern	00-FF(HEX) or random
Frequency offset		Channel power	0 to -40 dB
	ually configured)		configuration
Multicarrier	Up to 12 (user defined, individ-		on the selected radio
		Data rate	1.2 kbps to 1036.8 kbps, depends
		Radio configuration ⁴	fundamental, and supplemental 1 to 6
	clipping.)	(partially coded)	Pilot, dedicated control channel,
	A level of 100% equates to no	Channel type	
	percentage of full scale.	User-defined cdma2000	
Clipping range	10% to 100% (clip the modulation level to a		at 153.6 kbps
Clipping type	I+jQ , I and Q 10% to 100%		and two supplemental RC3
Clip location	Pre-or post-FIR filter		channel, traffic RC3 at 9.6 bps,
Clipping		5 channel, (SR1 or SR3)	Includes pilot, dedicated control
01: :		Pilot channel, SR1	Pilot at Walsh 0
I/Q mapping	Normal, invert	configurations (partially cod	ed)
		Pre-defined channel	Direct spieau only
Rectangle		Spreading type	Direct spread only
	automatically scaled	Reverse link	
	16-bit resolution	υατά ματτεπι	
Custom FIR	Up to 256 coefficients	Data pattern	00-FF(HEX) or random
Gaussian	$B_{\rm b}T = 0.1$ to 1	Channel power PN offsets	0 to 511
Nyquist, root Nyquist	$\alpha = 0$ to 1	Channel new or	configuration chosen 0 to –40 dB
Other FIR filters			ranges depending on the radio
			have codes selected from specific
emissions for adjacent channel			Walsh 0 and 32. Other channels
All are IS-95 compliant. "Modif		Walsh code	Pilot and sync have fixed codes,
	IS-95 modified with equalizer		configuration
	IS-95 with equalizer IS-95 modified		on the selected radio
IS-95 filter selection	IS-95	Data rate	1.2 kpbs to 1036.8 kbps, depends
IC OF filter coloction	10.05		SR3: 6 to 9
Spreading rate	1x (SR1), 3x (SR3)	Radio configuration	fundamental, and supplemental SR1: 1 to 5
0 "		(partially coded)	Pilot, paging (SR1 only), sync,
Cations.		Glianner types	

9 channel, DS or Multicarrier/SR3

User-defined cdma2000

Channel types

Radio configuration 6

Pilot at 9.6 kbps, sync at 1.2 kbps, three fundamental channels at

9.6 kbps, and four supplemental channels at 153.6 kbps

Spreading type Pre-defined channel configurations (partially coded) Pilot channel, DS/SR1 Pilot channel, DS/SR3 Pilot channel. Multicarrier/SR3 9 channel, DS/SR1

Direct spread (DS), multicarrier

Pilot at Walsh 0 Pilot at Walsh 0

Pilot at Walsh 0 **Radio configuration 3** Pilot at 9.6 kbps, paging at 9.6 kbps, sync at 1.2 kbps, two fundamental channels at 9.6 kbps, and four supplemental channels at 153.6 kbps

(825 to 2100 MHz, SR3 pilot, IS-95 filter, which is optimized for EVM, typical)

			Offsets from	n center of carr	ier		
	2.135 to	o 2.50 MHz	2.50 to	3.23 MHz	3.23 to	10 MHz ²	
Channels/offsets	Standard	Option H99 revision B	Standard	Option H99 revision B	Standard	Option H99 revision B	
Forward 9 channel, SR3/	multicarrier ³						
30 – 200 MHz	(68)	(68)	(66)	(68)	(69)	(-70)	
700 – 1000 MHz	(69)	(-73)	(-68)	(-72)	(-70)	(-75)	
1000 – 2000 MHz	(—61)	(—73)	(—61)	(—73)	(64)	(—75)	

			Offsets from	center of carri	er	
	2.655 to	o 3.75 MHz	3.75 to	5.94 MHz	5.94 to	10 MHz ²
Channels/offsets	Standard	Option H99	Standard	Option H99	Standard	Option H99
Forward 9 channel, SR3/DS ⁴	ļ					
30 – 200 MHz	(75)	(74)	(76)	(75)	(-77)	(78)
700 – 1000 MHz	(-76)	(79)	((82)	((-82)
1000 – 2000 MHz	(—68)	(—79)	(—72)	(—82)	(—78)	(—82)
Reverse 5 channel, SR3/DS ³						
30 – 200 MHz	(77)	(77)	(-77)	(75)	(—76)	(79)
700 – 1000 MHz	(-77)	(80)	(78)	(82)	(-78)	(-82)
1000 – 2000 MHz	(—71)	(—81)	(72)	(82)	(—78)	(82)

^{1.} Parentheses denote typical performance.

^{2.} Excluding 10 MHz reference clock spur (\leq -67 dBc, typical).

^{3.} Measurements performed with 30 kHz bandwidth relative to power in one carrier.

^{4.} Measurements performed with 30 kHz bandwidth relative to total power.

Real-time 3GPP¹ **W-CDMA** personality

(Option 200, ESG-DP and ESG-D series only)

Description

Option 200 W-CDMA personality adds a flexible solution for W-CDMA mobile and base station test to Agilent ESG-D and ESG-DP (high spectral purity) series RF signal generators. Signals are fully coded in both forward and reverse links to provide complete testing of receivers.

Channel types generated

Primary Synchronization (PSCH), Secondary Synchronization (SSCH), Primary Common Control (P-CCPCH), Common Pilot (CPICH), Dedicated Physical (DPCH), Page Indication (PICH), Orthogonal Channel Noise Source (OCNS), Dedicated Physical Control Channel (DPCCH), Dedicated Physical Data Channel (DPDCH)

BTS setup

FIR filter

Chip rate

Root Nyquist, Nyquist Gaussian User defined FIR

a = 0 to 1 $B_{h}T = 0$ to 1 Up to 256 coefficients. 16-bit resolution

1 kcps to 4.25 Mcps

Primary scramble code 0 to 511

Downlink channel configurations

(Up to 4 channels can be configured simultaneously. With a two ESG setup, an additional four channels may be configured.)

PSCH

Power

SSCH Power Scramble code group

P-CCPCH

Power OVSF Transport channel Data field

CPICH Power -40 to 0 dB

-40 to 0 dB 0 to 63 (coupled to primary scramble code)

-40 to 0 dB 0 to 255 BCH coding PN9, PN15, 4-bit repeating pattern, user file

-40 to 0 dB

DPCH

Reference measurement channels Transport layer (DCH) control

Data Coding

Physical layer control Power Symbol rate

OVSF

Slot format

TFCI pattern

TPC pattern

τDPCH offset Secondary scramble code offset Data

PICH

Power OVSF Data

OCNS

Power Symbol rate

OVSF

Data

Secondary scramble code offset 0 to 15

12.2, 64, 144, 384 kbps

(Up to 6 DCH's for each DPCH) block size, Transport Time Interval (TTI), rate matching, CRC size, transport channel number PN9, FIX4, user file none. convolutional 1/2. convolutional 1/3, turbo -40 to 0 dB 7.5, 15, 30, 60, 120, 240, 480, 960 Ksps 0 to 511 (dependent on channel

symbol rate) 0 to 16 (dependent on channel symbol rate) 10-bit user defined input pattern (converted to 30-bit code word with Reed-Mueller coding) Ramp up/down N number of times (N = 1 to 80), all up, all down 0 to 149

0 to 15 PN9, PN15, 4-bit repeating pattern, user file, transport channel

-40 to 0 dB 0 to 511 PN9, PN15, user file, 4-bit repeating pattern

-40 to 0 dB 7.5, 15, 30, 60, 120, 240, 480, 960 Ksps 0 to 511 (Dependent on channel symbol rate) PN9, PN15

1. Supports R99 December 2000 3GPP W-CDMA standard.

User equipment (UE) setup

FIR filter

Root Nyquist, Nyquista= 0 to 1GaussianBbT= 0 to 1

Chip rate

1 kcps to 4.25 Mcps

Primary scrambling code 0 to 16777215

Secondary scrambling offset 0 to 15

Uplink synchronization signal setup

Timing offset range:	Timing offset 512 to 2560 chips
	Slot delay 0 to 119 slots
Synchronization signal	System Frame Number (SFN) reset or frame clock
Frame clock interval	10 ms, 20 ms, 40 ms, 80 ms
Frame clock polarity	Positive, negative
SFN RST polarity	Positive, negative
Sync trigger mode	Single, continuous
	BBG data clock (chip clock) setup
	internal, external
External clock rate	x 1 (3.84 MHz), x 2 (7.68 MHz)
	x 4 (15.36 MHz)
External clock polarity	Positive, negative

Uplink channel configurations

Pre-set channel type Reference measurement channel: 12.2 kbps, 64 kbps, 144 kbps, 384 kbps UDI 64 k AMR 12.2 k

User defined channels

One DPCCH, one DPDCH, up to 6 transport channels

DPCCH (Dedicated Physical Control Channel)

Power		–40 to 0 dB
Beta		0 to 15 (coupled to power)
Chann	el code	0 to 255
TFCI pa	attern	PN9, PN15, 0 to 03FF hex, user file
TFCI st	tate	(Depends on slot format)
Symbo	l rate	15 ksps (Non adjustable)
FBI pat	tern	PN9, PN15, 0 to 3FFFFFFF hex, user file
FBI sta	ate	(Depends on slot format)
Slot fo	rmat	0 to 5
Interle	aver	On (non adjustable)
TPC pa	ittern	PN9, PN15, 4-bit repeating pattern,
		user file, up/down, down/up, all up,
		all down
TPC pa	attern steps	1 to 80

DPDCH (Dedicated Physical Data Channel)

i Boll (Bouloutou i liyolou	
Power	Off, -40 to 0 dB
Beta	0 to 15 (coupled to power)
Channel code	0 to 255 (maximum value depends
	on symbol rate/slot format)
Data	PN9, PN15, 4-bit repeating pattern,
	user file, transport channel
Symbol rate	15, 30, 60, 120, 240, 480, 960 ksps
	depending on slot format
Slot format	0 to 6

Transport channel setup

Block size	
Number of blocks	5
Coding	

	tu
TTI	10
Data	Pľ
Rate matching attributes	11
CRC size	0,
Error insertion	В
BLER (Block Error Rate)	0 1
BER (Bit Error Rate)	0 1
Bits frame	A

0 to 5000 0 to 4095 1/2 convolutional, 1/3 convolutional, turbo, none 10 ms, 20 ms, 40 ms, and 80 mSec PN9, 4-bit repeating pattern, user file 1 to 256 0, 8, 12, 16, 24 BLER or BER, or none 0 to 1 (resolution 0.001) 0 to 1 (resolution 0.0001) Automatically calculated

Input

Synchronization signal (SFN RST or frame clock): Pattern trigger in BBG data clock (chip clock): data clock in

Output

Chip clock out (3.84 MHz): Data clock out Frame timing out: system sync out DPDCH (I) symbol data: event1 out DPDCH (I) symbol clock: event2 out DPCCH (Q) symbol data: data out

Real-time cdma2000 personality

(Option 201, ESG-DP and ESG-D series only)

Description

Option 201, cdma2000 personality, adds a flexible solution for cdma2000 mobile and base station test to Agilent ESG-D and ESG-DP (high spectral purity) series RF signal generators. Option 201 is a firmware personality that requires Option UN8, (hardware revision C or greater), real-time baseband generator to be installed in the ESG. The fully coded nature of this solution in both forward and reverse mode supports long and short codes, cyclic redundancy checks, convolutional or turbo encoding, interleaving, power control, and complex scrambling. Additional capabilities allow flexible channel configurations with individually adjustable power levels and data rates, customizable user data, and variable chip rates. The option is backwards compatible with IS–95A, in both the base station and mobile simulation modes, through support of radio configuration 1 and 2.

Global controls across all channels

Channel power	0 to40 dB
I/Q voltage scale	0 to40 dB

Forward channel configurations

Channel types generated

Up to four channels simultaneously, of any of the following

Pilot Paging Sync F-Fundamental F-Supplemental OCNS

BNC MUX outputs

DNG MOX outputs	
Event 1	Delayed even second, 20 ms trig delay, 80 ms trig delay, offset 80 ms trig, 25 ms
	clock, page enable sync, offset 80 ms sync
Data out	PC ramp, Yi FFCH, Yq FFCH, FPCH W,
	Sync W, FPCH X, 25 ms clock
Data clock out	Chip clock, 19.2 clock, 38.4 clock, offset
	80 ms trig, forward channel clock,
	forward channel I clock, forward channel
Q clock	
Symbol sync out	Even second, FPCH page, page sync,
Symbol Sync Out	
	FFCH page, 20 ms trig delay, FFCH frame
	sync, PN sync
BTS setup	
Filter	Root Nyquist, Nyquist, Gaussian, IS-95,
The	
	IS-95 w/ EQ, IS-95 MOD, IS-95 MOD w/
	EQ, rectangle, APCO 25 C4FM, user file
Spread rate	1
PN offset	0-511
Chip rate	50 cps-1.3 Mcps
Even second delay	0.5 to 128 chips
Long code state	0 to 3FFFFFFFFF

Pilot channel Walsh

0 (non-adjustable)

Sync channel

Walsh Data 0 to 63 Free editing of the following fields: SID, NID, F-synch type, Sys_Time, PRAT, LTM_Off, Msg_Type, P_REV, MIN_P_REV, LP_SEC, DAYLT, CDMA Freq, ext CDMA freq, and Reserved

Paging channel

Walsh Data Long code mask Rate

0 to 63 Default paging message or userfile 0-3FFFFFFFFFFh 4.8 or 9.6 kbps

Fundamental channel

1 to 5
0 to 63
1.2 to 14.4 kbps, depending on radio configuration
PN9, PN15, userfile, external serial data, or predefined bit patterns
0-3FFFFFFFFFFh
N up/down, "N" may be set from 1 to 80
0n/off
0 (non-adjustable)
20 ms (non-adjustable)

Supplemental channel

Same channel configuration as fundamental, except:

Radio configuration	3 to 5
Walsh	0-63, depending on RC and data rate
Data rate	19.2 to 307.2 kbps, depending on radio configuration
Turbo coding	May be selected for data rates from 28.8 to 153.6 kbps
Power control	Not provided
Power puncture	Not provided

OCNS channel

0 to 63

Inputs

Walsh

External dataCan be selected for one channel, either
fundamental or supplementalOutputsVarious timing signals such as chip

clock and even second

25

Reverse channel configurations

Reverse channel configurations		Radio configurations 3 and 4 Reverse Pilot Channel (R-PICH)	
	g RC1 or RC2 which utilizes a single,	Walsh code Gating rate	0 (non adjustable) Quarter, half, full
selectable channel type	:	PCB data	0 to FFFF hex
Reverse Access Control		Poveras Dedicated C	entrol Channel (P. DCCH)
Reverse Fundamental C	. ,	Walsh code	ontrol Channel (R-DCCH) 0 to 15
Reverse Supplemental (Shannel (R-SCH)	Data	PN9, PN15, fixed 4 bit pattern, user file
IS-2000 features are sup	pported using RC3 or RC4. The channel	Frame length	5 or 20 mSec
types consist of the foll		Data rate	For frame length = 5
	R–PICH) (with or without gating)		9.6 kbps, for RC 3 or 4
Reverse Dedicated Cont			For frame length = 20
Reverse Common Contr Reverse Enhanced Acce		Fromo offost	9.6 kbps for RC 3 and 14.4 kbps for RC4
Reverse Fundamental C	· · · · ·	Frame offset	(0 to frame length/1.25) –1
Reverse Supplemental (Reverse Fundamenta	I Channel (R-FCH)
		Walsh code	0 to 15
BNC MUX output		Data	PN9, PN15, fixed 4 bit pattern, user file
Event 1	Delayed even second, PN sync	Frame length	5 or 20 mSec
Data out	Long code, pilot, coded RSCH, coded RDCCH, coded RFCH, coded RCCCH,	Data rate	For frame length = 5 9.6 kbps, for RC 3 or 4
	coded REACH, Zi, Zq		For frame length = 20
Data clock out	Chip clock, 5 ms, 10 ms, 20 ms , 40 ms,		1.5, 2.7, 4.8, and 9.6 kbps for RC 3
	80 ms		1.8, 3.6, 7.2, and 14.4 kbps for RC4
Symbol sync out	Even second, long code sync	Frame offset	(0 to frame length/1.25) -1
Mobile set-up			al Channel 0 (R-SCH0)
Radio configuration	1 to 4	Walsh code	0 to 7
Trigger advance	1 to 2457599	Data France Ian eth	PN9, PN15, fixed 4 bit pattern, user file
Trigger edge	Rising, falling 0 to 3FFF FFFF FFFF FFFF hex	Frame length Data rate	20, 40 or 80 mSec For frame length = 20
Long code state Long code mask	0 to 3FFF FFFF FFFF FFFF hex	Dala Tale	1.5, 2.7, 4.8, 9.6, 19.2 ² , 38.4 ² , 76.8 ² , 153.6 ² ,
-			307.2 kbps for RC 3
Radio configuratio			1.8, 3.6, 7.2, 14.4, 28.8 ² , 57.62, 115.2 ² ,
Reverse Access Channe			230.4 kbps for RC4
Data Data rata	PN9, PN15, fixed 4 bit pattern, user file		For frame length = 40
Data rate Frame length	4.8 kbps 20		1.35, 2.4, 4.8, 9.6,19.2 ² , 38.4 ² ,76.8 ² ,
Frame offset	0 to 15		153.6 ² kbps for RC 3 1.8, 3.6, 7.2, 14.4 ² , 28.8 ² , 57.6 ² ,
			115.2 ² kbps for RC4
Reverse Fundamental C			For frame length = 80
Data Data unto	PN9, PN15, fixed 4 bit pattern, user file		1.2, 2.4, 4.8, 9.6,19.2 ² , 38.4 ² ,76.8 ² ,
Data rate	1.2 kbps, 2.4 kbps, 4.8 kbps, 9.6 kbps for RC1		kbps for RC 3
	1.8 kbps, 3.6 kbps, 7.2 kbps, 14.4 kbps		1.8, 3.6, 7.2 ² , 14.4 ² , 28.8 ² , 57.6 ² kbps
	for RC2	F (()	for RC4
Frame length	20 mSec	Frame offset	(0 to frame length/1.25) -1
Frame offset	0 to 15		al Channel 1 (R-SCH1)
Reverse Supplemental (Channel 0 (R-SCH)	Walsh code	0 to 7 PN0_PN15_Fixed 4 bit pattern upper file
Turbo coding	On/off `	Data Frame length	PN9, PN15, Fixed 4 bit pattern, user file 20, 40 or 80 mSec
Data	PN9, PN15, fixed 4 bit pattern, user file	Data rate	For frame length = 20
Data rate	1.2 kbps, 2.4 kbps, 4.8 kbps, 9.6 kbps for		1.5, 2.7, 4.8, 9.6,19.2 ² , 38.4 ² ,76.8 ² kbps
	RC1		for RC 3
	1.8 kbps, 3.6 kbps, 7.2 kbps, 14.4 kbps for RC2		1.8, 3.6, 7.2, 14.4, 28.8 ² , 57.6 ² , 115.2 ²
Frame length	20 mSec		kbps for RC4
Frame offset	0 to 15		For frame length = 40
			1.35, 2.4, 4.8, 9.6,19.2 ² , 38.4 ² ,76.8 ² ,
			153.6 ² kbps for RC 3
 Only one channel is available These data rates are available 			1.8, 3.6, 7.2, 14.4 ² , 28.8 ² , 57.6 ² , 115.2 ² kbps for RC4
3. If either REACH or RCCCH			

Only one channel is available in RC1and RC2.
 These data rates are available with turbo encoding.
 If either REACH or RCCCH is on, then RPICH is the only

other channel that can be on.

For frame length = 80 1.2, 2.4, 4.8, 9.6, 19.2^2 , 38.4^2 , 76.8^2 , kbps for RC 3 1.8, 3.6, 7.22, 14.42, 28.82, 57.62 kbps for RC4 (0 to frame length/1.25) -1

R-CCCH³ (Reverse Common Control Channel) and R-EACH³

(Reverse-Enhanced Access Channel)

Walsh code Data Frame length Data rate

Frame offset

ess Channel) 0 to 7 PN9, PN15, fixed 4 bit pattern, user file 5, 10 or 20 mSec For frame length = 5 38.4 kbps For frame length = 10 19.2, 38.4 kbps For frame length = 20 9.6, 19.2, 38.4 kbps

Real-time EDGE³ personality

(Option 202, ESG-DP and ESG-D series only)

Description

Option 202 is a firmware personality built upon the internal real-time I/Q baseband generator (Option UN8). This option will simulate both uplink and downlink EDGE signals. Data can be generated internally or externally with continuous data, or bursted and framed signals. Use custom filtering and framing to keep pace with the evolving definition of EDGE.

Modulation	$3\pi/8$ -rotating 8PSK (per EDGE specifications) user-selectable (see Modulation under Option UN8)
Filter	"Linearized" Gaussian (per EDGE specifications) user-selectable (see Filter under Option UN8)
Symbol rate	User-adjustable (see Symbol rate under Option UN8) 270.833 kHz (default)

Burst ShapeDefaults to EDGE standard power vs.
time mask with user definable rise and
fall time. Alternatively, upload externally
defined burst shape waveforms.Data structureTime slots may be configured as normal
or custom. The data field of a time slot
can accept a user file, PRBS (PN9 or
PN15), a fixed sequence or external
data. All other fields in a timeslot are
editable.

EVM performance (typical)1

Output power		Output freq	uency
Standard	Option UNB	800 MHz	1900 MHz
≤7 dBm	≤ 10 dBm	< 0.75%	< 1.75%
\leq 4 dBm	≤7 dBm	< 0.75%	< 1.00%

Alternate time slot power level control

(Option UNA, ESG-DP and ESG-D series only)

Amplitude is settled within 0.5 dB in 20 $\mu secs,$ +4 to –136 dBm at 23 \pm 5 °C

^{1.} All specifications apply at 23 \pm 5 °C.

^{2.} With ALC OFF, specifications apply after the execution of power search. With ALC ON, specifications apply for pulse repetition rates \leq 10 kHz and pulse widths \geq 5 $\mu s.$

^{3.} EDGE and IS-136HS traffic channels have the same physical layer. This EDGE signal can be used to simulate an IS-136HS traffic channel for component tests.

General characteristics

Power requirements	90 to 254 V; 50, 60, or 400 Hz; 200 W maximum
Operating	
temperature range	0 to 55 °C
Storage	
temperature range	–40 to 71 °C
Shock and vibration	Meets MIL-STD-28800E Type III, Class 3.

Leakage: Conducted and radiated interference meets MIL-STD-461C CE02 Part 2 and CISPR 11. Leakage is typically < 1 μ V (nominally 0.1 μ V with a 2-turn loop) at \leq 1000 MHz, measured with a resonant dipole antenna, one inch from any surface with output level < 0 dBm (all inputs/outputs properly terminated).

Storage registers: Memory is shared by instrument states, user data files, sweep list files and waveform sequences. Depending on the number and size of these files, up to 800 storage registers and 10 register sequences are available.

Weight	< 13.5 kg (28 lb.) net, < 19.5 kg (42 lb.) shipping
Dimensions	133 mm H x 426 mm W x 432 mm D (5.25 in H x 16.8 in W x 17 in D)

Remote programming

Interface GPIB (IEEE-488.2-1987) with listen and talk. RS-232.

Control languages SCPI version 1992.0, also compatible with 8656B and $8657A/B/C/D/J^1$ mnemonics.

Functions controlled All front panel functions except power switch and knob.

IEEE-488 functions SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP0, DC1, DT0, C0, E2.

ISO compliant

The ESG series RF signal generators are manufactured in an ISO-9001 registered facility in concurrence with Agilent's commitment to quality.

Accessories

Transit case

Part number 9211-1296

83300A

Remote interface

Inputs and outputs

All front panel connectors can be moved to rear with Option 1EM. **RF output**

Nominal output impedance 50 ohms. (type-N female, front panel)

Outputs the internally-generated LF source. Outputs 0 to 3 Vpeak into 50 ohms, or 0 to 5 V_{peak} into high impedance. (BNC, front panel)

External input 1

Drives either AM, FM, Φ M, or burst envelope. Nominal input impedance 50 ohms, damage levels are 5 V_{rms} and 10 $V_{peak}.$ (BNC, front panel)

External input 2

Drives either AM, FM, Φ M, or pulse. Nominal input impedance 50 ohms, damage levels are 5 V_{rms} and 10 V_{peak}. (BNC, front panel)

Auxiliary interface

Used with 83300A remote keypad sequencer (9-pin RS-232 connector female, rear panel)

10 MHz input

Accepts a 10 MHz \pm 10 ppm (standard timebase) or \pm 1 ppm (high-stability timebase) reference signal for operation with an external timebase. Nominal input impedance 50 ohms. (BNC, rear panel)

10 MHz output

Outputs the 10 MHz internal reference level nominally +7 dBm ±2 dB. Nominal output impedance 50 ohms. (BNC, rear panel) GPIB

Allows communication with compatible devices. (rear panel)

Sweep output

Generates output voltage, 0 to +10 V when signal generator is sweeping. Output impedance < 1 ohm, can drive 2000 ohms. (BNC, rear panel)

Trigger output

Outputs a TTL signal: high at start of dwell, or when waiting for point trigger in manual sweep mode; low when dwell is over or point trigger is received, high or low 4 μ s pulse at start of LF sweep. (BNC, rear panel)

Trigger input

Accepts TTL signal for triggering point-to-point in manual sweep mode, or to trigger start of LF sweep. Damage levels \geq +10 V or \leq -4 V. (BNC, rear panel)

With ESG-AP and ESG-A series and

Option 1E6 only

Pulse input

Drives pulse modulation. Input impedance TTL. (BNC, front or rear panel)

With ESG-DP and ESG-D series only

"I" input

Accepts an "I" input either for I/Q modulation or for wideband AM. Nominal input impedance 50 ohms, damage levels are 1 V_{rms} and 10 V_{peak} . (BNC, front panel)

"Q" input

Accepts a "Q" input for I/Q modulation. Nominal input impedance 50 ohms, damage levels are 1 V_{rms} and 10 V_{neak} . (BNC, front panel)

1. ESG series does not implement 8657A/B "Standby" or "On" (R0 or R1, respectively) mnemonics.

General characteristics (continued)

Coherent carrier output

Outputs RF modulated with FM or Φ M, but not IQ or AM. Nominal power 0 dBm ±5 dB. Frequency range from 249.99900001 MHz to maximum frequency. For RF carriers below this range, output frequency = 1 GHz – frequency of RF output. Damage levels 20 V_{dc} and 13 dBm reverse RF power. (SMA, rear panel)

With ESG-DP and ESG-D series and Option UN8 only

Data input

Accepts serial data for digital modulation applications. Expects CMOS input. Leading edges must be synchronous with DATA CLOCK rising edges. The data must be valid on the DATA CLOCK falling edges. Damage levels are > +8 and < -4 V. (BNC, front panel) **Data clock input**

Accepts CMOS clock signal (either bit or symbol), to synchronize inputting serial data. Damage levels are > +8 and < -4 V. (BNC, front panel)

Symbol sync input

Accepts CMOS synchronization signal. Symbol sync might occur once per symbol or be a single, one bit wide pulse to synchronize the first bit of the first symbol. Damage levels are > +8 and < -4 V. (BNC, front panel)

Baseband generator reference input

Accepts 0 to +20 dBm sinewave, or TTL squarewave, to use as reference clock for GSM applications. Only locks the internal data generator to the external reference; the RF frequency is still locked to the 10 MHz reference. Nominal impedance is 50 ohms at 13 MHz, AC-coupled. Damage levels are > +8 and < -8 V. (BNC, rear panel)

Burst gate input

Accepts CMOS signal for gating burst power when externally supplying data. Damage levels are > +8 and < -4 V. (BNC¹, rear panel) Pattern trigger input accepts CMOS signal to trigger internal pattern or frame generator to start single pattern output. Damage levels are > + 8 and < -4 V. (BNC¹, rear panel)

Event 1 output

Outputs pattern or frame synchronization pulse for triggering or gating external equipment. May be set to start at the beginning of a pattern, frame, or timeslot and is adjustable to within \pm one timeslot with one bit resolution. Damage levels are > + 8 and < -4 V. (BNC¹, rear panel)

Event 2 output

Outputs data enable signal for gating external equipment. Applicable when external data is clocked into internally generated timeslots. Data is enabled when signal is low. Damage levels > +8 and < -4 V. (BNC¹, rear panel)

Data output

Outputs data from the internal data generator or the externally supplied signal at data input. CMOS signal. (BNC¹, rear panel) Data clock output relays a CMOS bit clock signal for synchronizing serial data. (BNC¹, rear panel)

Symbol sync output

Outputs CMOS symbol clock for symbol synchronization, one data clock period wide. (BNC¹, rear panel)

"I" and "Q" baseband outputs

Outputs in-phase and quadrature-phase component of I/Q modulation from the internal baseband generator. Full scale is 1 V_{peak} to peak. Nominal impedance 50 ohms, DC-coupled, damage levels are > +2 and < -2 V. (BNC, rear panel)

With ESG-DP and ESG-D series and Option UND only

Baseband generator reference input

Accepts a TTL or > -10 dBm sinewave. Rate is 250 kHz to 20 MHz. Pulse width is > 10 ns.

Trigger types Continuous, single, gated, segment advance

"I" and "Q" baseband outputs

Outputs in-phase and quadrature-phase component of I/Q modulation from the internal baseband generator. Full scale is 1 V_{peak} to peak. Nominal impedance 50 ohms, DC-coupled, damage levels are > +2 and < -2 V. (BNC, rear panel)

Event 1 output

Even second output for multichannel CDMA. Damage levels are > +8 V and < -4 V. (BNC¹, rear panel)

With ESG-DP and ESG-D series and Option UN7 only

Data, clock and clock gate inputs

Accepts TTL or 75 Ω input. Polarity is selected. Clock duty cycle is 30% to 70%. Damage levels are > +8 V and < –4 V (BNC¹, rear panel) **Sync loss output**

Outputs a TTL signal that is low when sync is lost. Valid only when measure end is high. Damage levels are > +8 V and < -4 V. (SMB, rear panel)

No data detection output

Outputs a TTL signal that is low when no data is detected. Valid only when measure end is high. (SMB, rear panel)

Error-bit-output (not supported at 10 Mbps rate)

Outputs 80 ns (typical) pulse when error bit is detected. (SMB, rear panel)

Test result output

Outputs a TTL signal that is high for fail and low for pass. Valid only on measure end falling edge. (SMB, rear panel)

Measure end output

Outputs a TTL signal that is high during measurement. Trigger events are ignored while high. (SMB, rear panel)

With ESG-DP and ESG-D series and Option UNA Alternate power input

Accepts CMOS signal for synchronization of external data and alternate power signal timing. Damage levels are > +8 and < -4V. (BNC¹, rear panel)

With ESG-D and Option 300

321.4 MHz input

Accepts a 321.4 MHz IF signal. Nominal input impedance 50 ohms. (SMB, rear panel)

^{1.} Option 1EM replaces this BNC connector with an SMB connector.

Ordering information

See ESG Family RF Signal Generators Configuration Guide (literature number 5965-4973E) for more information

E4400B	1 GHz ESG-A series RF signal generator
E4420B	2 GHz ESG-A series RF signal generator
E4421B	3 GHz ESG-A series RF signal generator
E4422B	4 GHz ESG-A series RF signal generator
E4423B	1 GHz ESG-AP series RF signal generator
E4425B	3 GHz ESG-AP series RF signal generator
E4424B	2 GHz ESG-AP series RF signal generator
E4426B	4 GHz ESG-AP series RF signal generator
E4430B	1 GHz ESG-D series RF signal generator
E4431B	2 GHz ESG-D series RF signal generator
E4432B	3 GHz ESG-D series RF signal generator
E4433B	4 GHz ESG-D series RF signal generator
E4434B	1 GHz ESG-DP series RF signal generator
E4435B	2 GHz ESG-DP series RF signal generator
E4436B	3 GHz ESG-DP series RF signal generator
E4437B	4 GHz ESG-DP series RF signal generator

Options

See ESG Family RF Signal Generators Configuration Guide (literature number 5965-4973E) for more information

To add options to a model, use the following ordering scheme:

To add options to a model, use the following ordering scheme.	
	Example
Model #	E4432B
Model #-option#	E4432B-UND
Model #-option#	E4432B-100
Model #-0B1	Adds extra manual set
Model #-OBV	Adds service documentation, component level
Model #-0BW	Adds service documentation, assembly level
Model #-0BX	Adds service documentation, assembly and
	component level
Model #-1CM	Adds rack mount kit, part number 5063-9214
Model #-1CN	Adds front handle kit, part number 5063-9227
Model #-1CP	Adds rack mount kit with handles, part number 5063-9221
Model #-1E5	Adds high-stability timebase
Model #-1E6	High-performance pulse modulation
Model #-1EM	Moves all front panel connectors to rear panel
Model #-UN5	Adds multichannel IS-95 CDMA personality
Model #-UN7	Adds internal bit-error-rate analyzer
Model #-UN8	Adds real-time I/Q baseband generator with TDMA
	standards and 1 Mbit of RAM
Model #-UN9	Adds 7 Mbits of RAM to Option UN8
Model #-100	Adds multichannel W-CDMA personality
Model #-101	Adds multichannel cdma2000 personality
Model #-200	Adds real-time 3GPP W-CDMA personality
Model #-201	Adds real-time cdma2000 personality
Model #-202	EDGE personality for Real-Time BB generator
Model #-300	Base station BERT extension for Option UN7 (internal bit-error-rate analyzer)
Model #-404	Signal Studio for 1xEV-DO
Model #-406	Signal Studio for Bluetooth
Model #-UNA	Alternate timeslot power level control
Model #-UNB	Adds higher power with mechanical attenuator
Model #-UND	Adds internal dual arbitrary waveform generator
Model #-H99	Improves ACP performance for TETRA, CDMA, and W-CDMA
)	

ESG family application and product information

Application notes, product notes, and product overviews

- *RF Source Basics*, a self-paced tutorial (CD ROM), literature number 5980-2060E.
- Digital Modulation in Communications Systems—An Introduction, Application Note 1298, literature number 5965-7160E.
- Generating and Downloading Data to the ESG-D RF Signal Generator for Digital Modulation, Product Note, literature number 5966-1010E.
- Using Vector Modulation Analysis in the Integration, Troubleshooting and Design of Digital Communications Systems, Product Note, literature number 5091-8687E.
- Controlling TDMA Timeslot Power Levels in the ESG-D Series Option UNA, Product Note, literature number 5966-4472E.
- *Testing CDMA Base Station Amplifiers*, Application Note 1307, literature number 5967-5486E.
- Customize Digital Modulation with the ESG-D Series Real-Time I/Q Baseband Generator, Option UND, Product Note, literature number 5966-4096E.
- Using the ESG-D RF Signal Generator's Multicarrier, Multichannel CDMA Personality for Component Test, Option UN5, Product Note, literature number 5968-2981E.
- Generating Digital Modulation with the ESG-D Series Dual Arbitrary Waveform Generator, Option UND, Product Note, literature number 5966-4097E.
- Understanding GSM Transmitter Measurements for Base Transceiver Stations and Mobile Stations, Application Note 1312, literature number 5968-2320E.
- Understanding CDMA Measurements for Base Stations and their Components, Application Note 1311, literature number 5968-0953E.
- Testing and Troubleshooting Digital RF Communications Receiver Designs, Application Note 1314, literature number 5968-3579E.
- Using the ESG-D series of RF signal generators and the 8922 GSM Test Set for GSM Applications, Product Note, literature number 5965-7158E.
- ESG Series RF Signal Generators Option 200 W-CDMA, Product Overview, literature number 5988-0369EN.
- ESG Series RF Signal Generators Option 201 cdma2000, Product Overview, literature number 5988-0371EN.

Product literature

- ESG Family RF Signal Generators, Brochure, literature number 5968-4313E.
- ESG Family RF Signal Generators, Technical Specifications, literature number 5965-3096E.
- ESG Family RF Signal Generators, Configuration Guide, literature number 5965-4973E.
- Signal Generators: Vector, Analog, and CW Models, Selection Guide, literature number 5965-3094E.

See the ESG family Web page for the latest information

Get the latest news, product and support information, application literature, firmware upgrades and more. Agilent's Internet address for the ESG family is: http://www.agilent.com/find/esg

🔀 Agilent Email Updates

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Agilent Direct

www.agilent.com/find/quick

Quickly choose and use your test equipment solutions with confidence.

www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

is the US registered trademark of the LXI Consortium.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to www.agilent.com/find/removealldoubt

www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at: www.agilent.com/find/contactus

Phone or Fax

United States: (tel) 800 829 4444 (fax) 800 829 4433

Canada: (tel) 877 894 4414 (fax) 800 746 4866

China: (tel) 800 810 0189 (fax) 800 820 2816

Europe: (tel) 31 20 547 2111

Japan: (tel) (81) 426 56 7832 (fax) (81) 426 56 7840 Korea: (tel) (080) 769 0800 (fax) (080) 769 0900

Latin America: (tel) (305) 269 7500

Taiwan: (tel) 0800 047 866 (fax) 0800 286 331

Other Asia Pacific Countries: (tel) (65) 6375 8100 (fax) (65) 6755 0042 Email: tm_ap@agilent.com Revised: 09/14/06

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2003, 2004, 2005, 2006, 2007 Printed in USA, January 11, 2007 5965-3096E

